: if the fingers of the right hand are curled in the direction of the rotation then the thumb points to the positive pole. The axial tilt is defined as the angle between the direction of the positive pole and the normal to the orbital plane. The angles for Earth, Uranus, and Venus are approximately 23°, 97°, and 177° respectively.]]In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its plane and orbital plane.
The rotational axis of Earth, for example, is the imaginary line that passes through both the North Pole and South Pole, whereas the Earth's orbital axis is the line perpendicular to the imaginary plane through which the Earth moves as it revolves around the Sun; the Earth's obliquity or axial tilt is the angle between these two lines.
Over the course of an orbital period, the obliquity usually does not change considerably, and the orientation of the axis remains the same relative to the celestial sphere of fixed stars. This causes one pole to be pointed more toward the Sun on one side of the orbit, and more away from the Sun on the other side—the cause of the on Earth.
Earth currently has an axial tilt of about 23.44°. "Glossary" in Astronomical Almanac Online. (2023). Washington DC: United States Naval Observatory. s.v. obliquity. This value remains about the same relative to a stationary orbital plane throughout the cycles of axial precession. But the ecliptic (i.e., Earth's orbit) moves due to planetary perturbations, and the obliquity of the ecliptic is not a fixed quantity. At present, it is decreasing at a rate of about 46.8″ per century (see details in Short term below).
During the Middle Ages, it was widely believed that both precession and Earth's obliquity oscillated around a mean value, with a period of 672 years, an idea known as trepidation of the equinoxes. Perhaps the first to realize this was incorrect (during historic time) was Ibn al-Shatir in the fourteenth century and the first to realize that the obliquity is decreasing at a relatively constant rate was Fracastoro in 1538. The first accurate, modern, western observations of the obliquity were probably those of Tycho Brahe from Denmark, about 1584,Dreyer (1890), p. 123 although observations by several others, including al-Ma'mun, al-Tusi, Georg Purbach, Regiomontanus, and Bernhard Walther, could have provided similar information.
Annual are published listing the derived values and methods of use. Until 1983, the Astronomical Almanac's angular value of the mean obliquity for any date was calculated based on the work of Newcomb, who analyzed positions of the planets until about 1895:
where is the obliquity and is Tropical year from B1900.0 to the date in question.
From 1984, the Jet Propulsion Laboratory's DE series of computer-generated ephemerides took over as the fundamental ephemeris of the Astronomical Almanac. Obliquity based on DE200, which analyzed observations from 1911 to 1979, was calculated:
where hereafter is Julian centuries from J2000.0.
JPL's fundamental ephemerides have been continually updated. For instance, according to IAU resolution in 2006 in favor of the P03 astronomical model, the Astronomical Almanac for 2010 specifies: Astronomical Almanac 2010, p. B52
These expressions for the obliquity are intended for high precision over a relatively short time span, perhaps several centuries. Jacques Laskar computed an expression to order good to 0.02″ over 1000 years and several arcseconds over 10,000 years.
where here is multiples of 10,000 Julian day from J2000.0.See table 8 and eq. 35 in and erratum to article
Units in article are arcseconds, which may be more convenient.
These expressions are for the so-called mean obliquity, that is, the obliquity free from short-term variations. Periodic motions of the Moon and of Earth in its orbit cause much smaller (9.2 arcseconds) short-period (about 18.6 years) oscillations of the rotation axis of Earth, known as nutation, which add a periodic component to Earth's obliquity. Explanatory Supplement (1961), sec. 2C The true or instantaneous obliquity includes this nutation.
The Moon has a stabilizing effect on Earth's obliquity. Frequency map analysis conducted in 1993 suggested that, in the absence of the Moon, the obliquity could change rapidly due to orbital resonances and chaotic behavior of the Solar System, reaching as high as 90° in as little as a few million years ( also see Orbit of the Moon). However, more recent numerical simulations made in 2011 indicated that even in the absence of the Moon, Earth's obliquity might not be quite so unstable; varying only by about 20–25°. To resolve this contradiction, diffusion rate of obliquity has been calculated, and it was found that it takes more than billions of years for Earth's obliquity to reach near 90°. The Moon's stabilizing effect will continue for less than two billion years. As the Moon continues to recede from Earth due to tidal acceleration, resonances may occur which will cause large oscillations of the obliquity.
Mercury and Venus have most likely been stabilized by the tidal dissipation of the Sun. Earth was stabilized by the Moon, as mentioned above, but before its formation, Earth, too, could have passed through times of instability. Mars's obliquity is quite variable over millions of years and may be in a chaotic state; it varies as much as 0° to 60° over some millions of years, depending on perturbations of the planets. Some authors dispute that Mars's obliquity is chaotic, and show that tidal dissipation and viscous core-mantle coupling are adequate for it to have reached a fully damped state, similar to Mercury and Venus.
The occasional shifts in the axial tilt of Mars have been suggested as an explanation for the appearance and disappearance of rivers and lakes over the course of the existence of Mars. A shift could cause a burst of methane into the atmosphere, causing warming, but then the methane would be destroyed and the climate would become arid again.
The obliquities of the outer planets are considered relatively stable.
+ Axis and rotation of selected Solar System bodies | ||||||||
Sun | 14.18 | |||||||
Mercury | 6.14 | |||||||
Venus | −1.48 | |||||||
Earth | 360.99 | |||||||
Moon | 13.18 | |||||||
Mars | 350.89 | |||||||
Jupiter | 870.54 | |||||||
Saturn | 810.79 | |||||||
Uranus | −501.16 | |||||||
Neptune | 536.31 | |||||||
Pluto | 312.99 | −56.36 | ||||||
As of 2024 the axial tilt of 4 exoplanets have been measured with one of them VHS 1256 b having a Uranus like tilt of 90 degrees ± 25 degrees.
Astrophysicists have applied tidal theories to predict the obliquity of extrasolar planets. It has been shown that the obliquities of exoplanets in the habitable zone around low-mass stars tend to be eroded in less than a billion years, which means that they would not have tilt-induced seasons as Earth has.
|
|